2005-12-02-Debuncher Admittance Measurement

11-25-05:

- Establish circulating reverse protons to the Debuncher.
 - Don't forget to take the \$35 out of A:SCRES. If not, beam will be kicked out of the Debuncher on the next \$21 SY120 event.
- From the Pbar Sequencer P64
 - Inject beam and complete a vertical aperture scan
 - Start Pbar FTP #57
 - Red trace is the output of the spectrum analyzer connected to the Debuncher longitudinal Schottky. We use this device to determine the beam extinction point.
 - The Cyan and Green traces are loss monitors. We use these parameters to determine the touch point.
 - The blue trace is Debuncher beam.
 - The FTP has been experiencing problems dropping data. For this reason, we put the plot devices into a 15Hz datalogger. The plot can be retrieved from D44 -> User -> gollwitz -> DebVertAdm. After the scan is complete, do a "T2 = Now" and "Interval = 5 minutes."
 - Run the "Deb Vert aperture scan rev p" aggregate
 - Last 5 commands setup the DEX Bumps
 - Then run from the top
 - Adjust the scraper position to the right side of the plot by hand (~100 Steps = 1 mm) prior to heating the beam

- Print out the scan results and measure the distance between the touch point and the extinction point in mm.
- The equation for calculating the vertical admittance is: $A_v = (Measured (mm) * Scale (mm)/Plot Length (mm))^2/\beta_v$
 - ♦ Given
 - ♦ Scale = 32mm
 - ♦ Plot Length = 153mm

$A_v = (Measurement(mm) * 32/153)^2/13$

- \Box Typical values run around 23 π-mm-mrad.
- Inject beam and complete a horizontal aperture scan
 - Start Pbar FTP #56
 - Red trace is the output of the spectrum analyzer connected to the Debuncher longitudinal Schottky. We use this device to determine the beam extinction point.
 - ☐ The Cyan and Green traces are loss monitors. We use these parameters to determine the touch point.
 - The blue trace is Debuncher beam.
 - The FTP has been experiencing problems dropping data. For this reason, we put the plot devices into a 15Hz datalogger. The plot can be retrieved from D44 -> User -> gollwitz -> DebHorAdmit. After the scan is complete, do a "T2 = Now" and "Interval = 5 minutes."
 - Run the "Deb Hor aperture scan rev p" aggregate
 - Last 5 commands setup the DEX Bumps
 - Then run from the top
 - adjust the scraper position to the right side of the plot by hand (\sim 100 Steps = 1 mm) prior to heating the beam

- Print out the scan results and measure the distance between the touch point and the extinction point in mm.
- The equation for calculating the vertical admittance is:

 $A_h = (Measured (mm) * Scale (mm)/Plot Length (mm))^2/\beta_h$

- ♦ Given
 - ♦ Scale = 32mm
 - ♦ Plot Length = 153mm
 - \Rightarrow $\beta_h = 11.7m$

$A_h = (Measurement(mm) * 32/153)^2/13$

 \Box Typical values run around 30 π-mm-mrad.